Compact High Brightness Diode Laser Emitting 500 W from a 100 μ m Fiber
نویسندگان
چکیده
High power, high brightness diode lasers are beginning to compete with solid state lasers, i.e. disk and fiber lasers. The core technologies for brightness scaling of diode lasers are optical stacking and dense spectral combining (DSC), as well as improvements of the diode material. Diode lasers have the lowest cost of ownership, highest efficiency and most compact design among all lasers. Multiple Single Emitter (MSE) modules allow highest power and highest brightness diode lasers based on standard broad area diodes. Multiple single emitters, each rated at 12 W, are stacked in the fast axis with a monolithic slow axis collimator (SAC) array. Volume Bragg Gratings (VBG) stabilizes the wavelength and narrow the linewidth to less than 1 nm. Dichroic mirrors are used for dense wavelength multiplexing of 4 channels within 12 nm. Subsequently polarization multiplexing generates 450 W with a beam quality of 4.5 mm*mrad. Fast control electronics and miniaturized switched power supplies enable pulse rise times of less than 10 μs, with pulse widths continuously adjustable from 20 μs to cw. Further power scaling up to multi-kilowatts can be achieved by multiplexing up to 16 channels. The power and brightness of these systems enables the use of direct diode lasers for cutting and welding. The technologies can be transferred to other wavelengths to include 793 nm and 1530 nm. Optimized spectral combining enables further improvements in spectral brightness and power.
منابع مشابه
Net shape Functional Parts Using Diode Laser
Manufacturing processes, such as cutting, drilling, soldering, marking, forming 3Dsintered parts from metal powders and laser vapor deposition, are now well established practices using matured high power lasers like Nd:YAG, C02 and Excimer lasers(l). These lasers are bulky, inefficient and expensive. Semiconductor diode lasers, if wavelength is not a disadvantage, hold the potential of creating...
متن کاملEfficient Er:YAG lasers at 1645.55 nm, resonantly pumped with narrow bandwidth diode laser modules at 1532 nm, for methane detection
Eye safe laser operation at 1645.55 nm (6077 cm) of resonantly pumped Er:YAG laser systems is demonstrated in cw and Q-switched operation. High brightness diode laser modules emitting at 1532 nm have been utilized as pump sources providing an absorption efficiency of up to 96%. This leads to an overall efficiency of the Er:YAG laser of 30%. For cw operation, 9 W output power is possible at pump...
متن کاملHigh-Power and Tunable Operation of Erbium-Ytterbium Co-Doped Cladding-Pumped Fiber Lasers
We describe erbium-ytterbium co-doped fiber lasers in different free-running and tunable configurations. The lasers were cladding-pumped by high-power multimode diode sources. We compare pumping at 915 and 980 nm. With a free-running laser, we obtained slope efficiencies of up to 50% with 915-nm pumping and 38% with 980-nm pumping, with respect to absorbed pump power. We reached a double-ended ...
متن کاملHigh Performance Diode Lasers Emitting at 780-820 nm
High power 780-820 nm diode lasers have been developed for pumping and material processing systems. This paper presents recent progress in the development of such devices for use in high performance industrial applications. A newly released laser design in this wavelength range demonstrates thermally limited >25W CW power without catastrophic optical mirror damage (COMD), with peak wallplug eff...
متن کاملAdvances in semiconductor laser bars and arrays
Advances in high power semiconductor lasers such as increased spectral brightness, increased spatial brightness, and reduced cost architectures at wavelengths from the near infrared to the eye-safe regime have the potential to dramatically improve diode pumped systems and enable new direct diode applications. Data are presented which demonstrate both edge emitter devices and high power surface ...
متن کامل